J. Enzyme Inhibition, 1998, Vol. 13, pp. 253–266 Reprints available directly from the publisher Photocopying permitted by license only () 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Harwood Academic Publishers imprint, part of The Gordon and Breach Publishing Group. Printed in India.

THE MECHANISM OF INHIBITION OF BENZYLAMINE OXIDASE BY 3,5-DIETHOXY-4-AMINOMETHYLPYRIDINE(B₂₄)

F. BUFFONI^{a,*}, V. BERTINI^b and G. DINI^c

^aDepartment of Pharmacology of the University of Florence, Viale G.B. Morgagni, 65, Firenze 50134, Italy; ^bDepartment of Food and Pharmaceutical Chemistry and Technology of the University of Genoa, Italy; ^cDepartment of Mathematics of the University of Florence, Italy

(Received 21 July 1997)

B₂₄, 3,5-diethoxy-4-aminomethylpyridine, is a specific inhibitor of the semicarbazide-sensitive amine oxidase with high affinity for benzylamine (BnNH₂ SSAO). It is a site-directed inhibitor of pig plasma benzylamine oxidase (BAO) with an affinity for the enzyme much higher than that for benzylamine. B₂₄ inhibition is dependent on the molar ratio B₂₄/BAO because the inhibitor reacts mole to mole with the enzyme and benzylamine appears to be ineffective in removing the inhibitor from the adduct [EI]. B₂₄ is a weak substrate of BAO and for this reason the degree of inhibition (when the molar ratio B₂₄/BAO is lower than 1) decreases with the incubation time as well as with the preincubation time. This decrease is dependent on the gradual release of free enzyme which reacts with the substrate, giving [ES] without any interfering free B₂₄. When the B₂₄/BAO molar ratio is higher than 1, the free enzyme released by the oxidative deamination of B₂₄ reacts with the substrate, but the free B₂₄ present competitively inhibits the formation of [ES] and the affinity of benzylamine is therefore reduced.

This is the reason why B_{24} , in the kinetic experiments in which the inhibitor is not preincubated with the enzyme, may appear to be a competitive inhibitor or a mixed inhibitor, mainly competitive. When B_{24} is preincubated with the enzyme and the initial rate of benzylamine oxidation is measured, it appears as a non-competitive inhibitor becoming a mixed one only when the B_{24}/BAO molar ratio is high and the incubation time is long.

Keywords: Semicarbazide-sensitive amine oxidase (SSAO); Benzylamine oxidase; Enzymatic inhibitors; Benzylamine

Abbreviations: $B_{24} = 3,5$ -diethoxy-4-aminomethylpyridine; $BnNH_2 = benzylamine; PhCHO = benzylamine oxidase; GC-MS = gas chromatography-mass spectrometry; El = electronic impact; CI = chemical ionization.$

^{*} Corresponding author. Tel.: 055-4237411. Fax: 055-4361613. E-mail: buffoni@stat.ds.unifi.it.

INTRODUCTION

3,5-Diethoxy-4-aminomethylpyridine (B₂₄) is a specific inhibitor of benzylamine oxidase (BAO) and of tissue semicarbazide-sensitive amine oxidase with high affinity for benzylamine (BnNH₂ · SSAO).¹⁻⁵

It is active *in vitro* and *in vivo*:⁴ in the rat the drug is well absorbed by the oral route with a bioavailability of 51.5%. It has a distribution volume of 2.5–2.9 l/kg and a blood half life of 2.0 h. In rat tissue SSAO enzymes are strongly inhibited at doses of 25-50-100 mg/kg i.p.⁵ In vitro experiments have shown that the inhibition of the pure pig plasma BAO can be fully reversed by dialysis.⁴ Studies on the inhibition kinetics have concluded that it is of mixed, mainly competitive type of inhibitor.

It has been previously shown that B_{24} forms an adduct with pig plasma benzylamine oxidase (BAO) which was isolated and identified⁶ and which clearly showed that B_{24} is a site-directed inhibitor of pig plasma BAO, and a very weak substrate.⁶

These observations encouraged us to further study the mechanism of inhibition of pig plasma BAO by B_{24} and this paper presents the results obtained and a possible model of the type of BAO inhibition by B_{24} .

EXPERIMENTAL PROCEDURE

Materials

7-¹⁴C-Benzylamine hydrochloride (54 mCi/mmol) was purchased from Amersham (Buckinghamshire, England), benzylamine hydrochloride from Sigma (St. Louis, MO, USA), 1-pentane-sulphonic acid sodium, salt HPLC grade from Eastman Kodak (Rochester, NY, USA), methanol Lichrosorb from Merck (Darmstadt, Germany) and catalase from Boehringer Mannheim (Milan, Italy). The HPLC column Nucleosil C18 300/8/4 was purchased from Macherey-Nagel (Dueren, Germany). All other reagents were of pure analytical grade.

Methods

Enzyme and Inhibitor Preparation

Pure pig plasma BAO was prepared according to Buffoni and Blaschko.⁷ B_{24} was prepared according to Bertini *et al.*²

Gas Chromatography-Mass Spectrometry (GC-MS)

Mass spectrometry was carried out in a Varian Saturn 4 GC-MS system comprising a Star 3400 CX gas chromatograph coupled with a Saturn 4D mass spectrometer (ionic trap). A J&W DB5 column (5% phenyl, 95% methylpolysilyloxane, 30 m × 0.25 mm, 0.25 μ m) was used. Helium was the carrier gas. Injector temperature was 250°C, transfer line 270°C. The temperature program was: 50°C × 2 min, 20°C/min up to 300°C. Injections were performed in splitter mode (2 min purge-off valve). The EI (electronic impact) scan was between m/z 40-450; the CI (chemical ionisation) scan was between m/z 60-450 with gas reagent isobutane using the Varian SECI wave form.

HPLC

HPLC was carried out in a LKB HPLC 2150 used with a C18 column. The mobile phase was methanol 65% (v/v) in 0.02 M Na-pentane-sulphonate brought to pH 3.0 with acetic acid. The flow rate was 1 ml/min and peaks were recorded at 290 nm.

Enzyme Assay

¹⁴C-benzylamine was used as substrate and the assay was carried out at 37° C under the following conditions: 0.067 Na-phosphate buffer pH 7.4, 0.15 ml or 0.05 ml plus 0.1 ml of enzyme solution in 0.05 M Na-K-phosphate buffer pH 7.0, 0.05 ml of catalase (43 U/ml), 0.05 ml of buffer pH 7.4 or 0.05 ml of B₂₄ at different concentrations. After 10 min preincubation, 0.05 ml of ¹⁴C-benzylamine at different concentrations was separately added and the reaction was followed for 20 min or longer. The reaction was stopped with 0.1 ml of 3 N hydrochloric acid and the aldehyde formed was extracted with 1 ml of ethyl acetate. The ethyl acetate extract (0.5 ml) was counted in 10 ml of Instagel in a Packard liquid scintillation spectrometer.

Aldehyde of B_{24} Determination

BAO, 6.17 nmol, was incubated at 37°C for 30 min with 1.54-3.08-6.17-12.34 nmol B₂₄ in 1.1 ml total volume of 0.05 M Na-K-phosphate buffer pH 7.0.

At the end of the incubation period the reaction was stopped with 0.2 ml of 0.7% (w/v) perchloric acid. Proteins were removed by centrifugation at $12000g \times 40$ min. One ml of the supernatant was made alkaline with 0.05 ml of 13% (w/v) NaOH and extracted with 3 ml of ethyl acetate. The

extracts were dried under nitrogen and analysed by HPLC. The B_{24} -aldehyde appeared with a retention time of 4 min. Peaks eluted from the HPLC were analysed by GC-MS.

GC-MS was also carried out directly on the ethyl acetate extracts obtained under the following conditions: 29.5 nmol of BAO were incubated for 2 h at 37°C with 56 nmol of B_{24} in 2 ml of 0.067 M Na-phosphate buffer pH 7.4. At the end of the incubation period B_{24} -aldehyde was extracted with 10 ml of ethyl acetate.

Kinetic Constants

The kinetic constants for BAO in the absence and presence of B_{24} were obtained in duplicate using the following benzylamine concentrations in the reaction mixture as described in the enzyme assay: $333-166-83.3-41.6-16.6 \mu$ M. Kinetic constants were statistically computed according to Wilkinson.⁸

Mathematical Fitting

The mathematical fitting of the results was obtained with the software "Mathematica"¹⁰ using the NDSolve for numerical solution of the system of differential equations.

RESULTS

Changes of BAO Absorbance by B₂₄

As already described⁵ the addition of B_{24} to BAO produced a strong variation in the BAO absorbance at 530 nm (Figure 1). The maximum increase in the absorbance was obtained when the B_{24}/BAO molar ratio was 1 or higher than 1. The relationship between the B_{24} concentration and the increase of absorbance permitted calculation of the M constant of the B_{24} -BAO interaction which was $64\,000\pm1510$ (mean \pm s.e. of 5 determinations). This constant was called k_2 and was obtained by the linear plot of 1/[I] on $1/\Delta$ which was linear with a correlation coefficient of 0.998 ± 0.00032 (mean \pm s.e. of 5 experiments) where Δ was the increase in the absorbance at 530 nm, making 1 the maximum value.

$$[\mathbf{E} + \mathbf{I}] \xrightarrow{k_2} [\mathbf{E}\mathbf{I}]. \tag{1}$$

FIGURE 1 Variation in the visible spectrum of pig plasma benzylamine oxidase by the addition of different amounts of B_{24} . To 0.9 ml of 19.1 μ M BAO in 0.05 M Na-K-phosphate buffer pH 7.0, 20 μ l of the same buffer containing 3.72 nmol of B_{24} were added every 10 min at 37°C and the spectrum was recorded 5 min after every addition. (A) Spectrum of BAO and its progressive modification following B_{24} additions: (1) native enzyme; (2)-(8) progressive variation of the spectrum with the progressive addition of B_{24} . (B) Increase in the absorbance at 530 nm with the increase of the B_{24}/BAO molar ratio: $\Delta =$ increase of the absorbance, $R = B_{24}/BAO$ molar ratio.

The equation does not consider k_{-2} , nevertheless the complex [EI] is slowly transformed into [EI*].⁶ The decrease in the [EI] absorbance at 530 nm showed that the logarithm of the absorbance, in agreement with the following equation, was linear over time for 2 h (correlation coefficient 0.973), then the absorbance reached a constant value

$$[EI*] \rightarrow [EI]e^{-kt}.$$
 (2)

Production of B₂₄-Aldehyde

258

 B_{24} is gradually deaminated by pig plasma BAO. The formed aldehyde was detected in HPLC as described in the methods and identified in GC-MS. Figure 2 shows the amount of aldehyde produced at different B_{24} concentrations and Figure 3 shows the GC-MS identification of this aldehyde.

From these results it was possible to calculate the constant for the rate of oxidation of B_{24} under the described conditions which was $0.00082 \pm 0.0001 \text{ M}^{-1} \text{ s}^{-1}$ (mean \pm s.e. of 3 determinations). This rate constant was called k_3 .

Under the same conditions the rate of benzylamine oxidation calculated from the V_{max} reported in Table I was $0.204 \pm 0.007 \text{ M}^{-1} \text{ s}^{-1}$ (mean \pm s.e. of 5 determinations) and was called k_4 . The same kinetic experiments allowed calculation of the molar constant of benzylamine-BAO interaction (k_1) 3182 ± 205 (mean \pm s.e. of 5 experiments).

Oxidation of Benzylamine in the Presence of B₂₄

Previous experiments had shown that the degree of B_{24} inhibition decreased with the preincubation time only when the concentration of B_{24}

FIGURE 2 Aldehyde produced by the oxidative deamination of B_{24} catalysed by pig plasma benzylamine oxidase. 6.17 nmol of BAO were incubated for 30 min at 37°C with 1.54-3.08-6.17-12.34 nmol of B_{24} in a total volume of 1.1 ml of 0.05 M Na-K-phosphate buffer pH 7.0. The aldehyde formed was extracted as described in the methods and assayed by HPLC.

FIGURE 3 Identification by GC-MS of the aldehyde formed in the oxidation of B_{24} catalysed by pig plasma benzylamine oxidase. (A) Total ion chromatogram and ion chromatogram at m/z 195. (B) EI spectrum of the peak. (C) CI spectrum of the peak.

Time (min)	B ₂₄						
	0		0.0078 µm		0.0156 µm		
	K _m	V _{max}	K _m	V _{max}	K _m	V _{max}	
20	53.2 ± 3.2	61.7 ± 1.2	41.3 ± 2.7	34.8 ± 0.7	55.6±9.9	16.1 ± 1.0	
40	54.9 ± 1.2	67.4 ± 2.2	48.1 ± 2.3	44.2 ± 0.7	32.6 ± 4.5	20.3 ± 0.7	
60	57.4 ± 7.3	62.0 ± 2.6	52.2 ± 6.8	48.6 ± 2.0	45.4 ± 3.1	30.4 ± 0.6	
120	63.3 ± 5.5	54.3 ± 1.6	58.4 ± 4.3	49.0 ± 1.2	52.8 ± 2.0	41.4 ± 0.5	

TABLE I Kinetic constants for pig plasma benzylamine oxidase (BAO) in the presence and absence of B_{24} after different incubation times

 $K_{\rm m}$ (µM), $V_{\rm max}$ (nmoles/mg of protein/min). Values are mean ± s.e. obtained with the method of Wilkinson.⁸ Experiments were carried out in duplicate at 37°C with a BAO concentration 0.0156µM under the conditions described in the methods. 0.0078-0.0156µM B₂₄ was preincubated for 10min. The differences between $K_{\rm m}$ obtained at various incubation times are not statistically significant (Student's *t*-test, P > 0.05). The difference between $V_{\rm max}$ obtained at various incubation times in the absence of B₂₄ are not statistically significant, but are statistically significant in the presence of B₂₄ (P < 0.05).

was lower than that of BAO. It has also been observed that the IC_{50} M of B_{24} is related to the enzyme concentration corresponding to a B_{24}/BAO molar ratio of 0.5, when the initial rate of benzylamine oxidation was tested by adding the substrate after a few minutes of preincubation.

As reported in Table I the K_m did not significantly change with the incubation time but V_{max} gradually increased.

The increase in the rate of benzylamine oxidation was observed in 5 experiments in which B_{24} at different concentrations (molar ratio B_{24} / enzyme 0.5–1.0–2.0) was preincubated with the enzyme for 10 min before the addition of substrate. Table II shows the mean values and in Figure 4 an example is reported. The IC₅₀ M of B_{24} also increases with the incubation time as shown in Figure 5.

Proposed Model of BAO Inhibition by B₂₄

 B_{24} is a substrate of BAO. Hence it will compete with benzylamine for oxidation:

$$E + B_{24} \rightarrow EB_{24} \rightarrow EH_2B_{24}$$
-aldehyde $\xrightarrow{O_2} E + H_2O_2 + B_{24}$ -aldehyde
 $E + BnNH_2 \rightarrow EBnNH_2 \rightarrow EH_2PhCHO \xrightarrow{O_2} E + H_2O_2 + PhCHO.$

However this system would result in the K_m and IC₅₀ for B₂₄ being elevated in the presence of BnNH₂, whereas this is observed only if both substrates are added together. When EB₂₄ (EI) is formed BnNH₂ apparently is unable to displace B₂₄ from the enzyme. This minimum mechanism is

Time	Benzaldehyde produced (P) μ M concentration						
(min)	Control	B ₂₄ /E					
		0.5	1.0	2.0			
20	1.68 ± 0.03	0.87 ± 0.05	0.55 ± 0.03	0.25 ± 0.007			
40	3.45 ± 0.17	2.22 ± 0.10	1.42 ± 0.05	0.67 ± 0.029			
60	4.83 ± 0.45	3.95 ± 1.92	2.34 ± 0.10	0.98 ± 0.15			
80	6.12 ± 0.43	5.03 ± 0.10	3.82 ± 0.26	1.48 ± 0.05			
120	10.45 ± 0.95	8.39 ± 0.47	6.59 ± 0.14	3.29 ± 0.20			
180	13.79 ± 0.99	12.45 ± 0.65	11.58 ± 0.84	7.62 ± 0.10			

TABLE II Oxidation of benzylamine by pig plasma benzylamine oxidase (BAO) in the presence of different B_{24} concentrations

Means \pm s.e. of 5 experiments carried out in duplicate. Experimental conditions are described under methods. Enzyme concentration = 0.0078 μ M. B₂₄/E = molar ratio.

FIGURE 4 The progressive decrease in the B_{24} inhibition of pig plasma benzylamine oxidase with incubation time. The experiments were carried out using ¹⁴C-benzylamine as described in methods. The concentration of benzylamine was 330 µM, BAO 0.0078 µM and B_{24} as follows ($\bullet = 0$; $\times = 0.0039$; $\bigcirc = 0.0078$; $\triangle = 0.0115$; $\bigtriangledown = 0.0156 \mu$ M). B_{24} was pre-incubated for 10 min at 37°C and the reaction stopped at different incubation times. Each point is the mean of 2 determinations. *P* is the benzaldehyde produced in µM concentration.

FIGURE 5 Variation of the IC₅₀ M of B₂₄ for pig plasma benzylamine oxidase with incubation time. The experiments were carried out using ¹⁴C-benzylamine as described in the methods. The concentration of benzylamine was 330 μ M, BAO 0.0078 μ M, and B₂₄ 0.0039-0.0078-0.0115-0.0156 μ M. B₂₄ was preincubated for 10 min at 37°C and the reaction stopped at different incubation times. Each point is the mean of 2 determinations. $\Phi = 20 \text{ min}; \times = 40 \text{ min}; \bigcirc = 60 \text{ min}; \square = 80 \text{ min}; \blacktriangle = 120 \text{ min}.$

shown below.

RIGHTSLINKA)

where P_i is the aldehyde of B_{24} and P_s the benzaldehyde and the constants k_1 and k_2 are association constants (k_{-1} and k_{-2} considered very small).

Mathematical fitting of the results reported in Table II were quite good using the following constants: k_1 3182, k_2 64000, k_3 0.000636 M⁻¹s⁻¹, k_4 0.204 M⁻¹s⁻¹ when the molar ratio B₂₄/BAO was lower than 1. When the B₂₄/BAO molar ratio was 2 the best fitting was obtained by taking in account the competition between the 2 substrates according to the usual equation⁹ (Figure 6):

$$k_1/(1 + [I]/K_i)$$
 (where K_i was 7×10^{-10} M).

The constants needed for a good fitting were those experimentally obtained with the exception of k_3 which was reduced to a lower value than that obtained by the direct measurement of B_{24} -aldehyde. This might suggest that in the presence of benzylamine the rate of B_{24} oxidation is reduced. This is in agreement with the experimental observation that the

FIGURE 6 Computer fitting of the experimental results reported in Table II. Conditions used; BAO $0.0078 \,\mu$ M; B₂₄ $0.0156-0.0078-0.0039 \,\mu$ M; BnNH₂ 333 μ M. The following constants were used: k_1 3182; k_2 64000; k_3 0.000636 M⁻¹s⁻¹; k_4 0.204 M⁻¹s⁻¹; K_i 7 × 10⁻¹⁰ M. When B₂₄/E molar ratio was 2, K_1 was: $K_1/(1 + [1]/K_i)$. The points are the experimental values for: A = enzyme alone; B = B₂₄/E 0.5 molar ratio; C = B₂₄/E 2 molar ratio; D = B₂₄/E 1 molar ratio. t = s, P = benzaldehyde produced (M).

rate of the decrease of the absorbance at 530 nm is reduced in the presence of benzylamine. The constant k of Eq. (2) was reduced to 0.00011 from 0.000638 when the enzyme concentration was $15 \,\mu$ M, the ratio B_{24}/E 1.55 and the concentration of BnNH₂ 10^{-2} M.

FIGURE 7 Computer fitting of the production of benzaldehyde at different BnNH₂ concentrations (kinetic constants reported in Table I). Conditions used: BAO 0.0156 μ M; B₂₄ 0.0156-0.0078 μ M. Numbers on the figures indicate the BnNH₂ concentration (μ M). The following constants were used: k_1 3182; k_2 64 000; k_3 0.000636 M⁻¹s⁻¹; k_4 0.204 M⁻¹s⁻¹. The points are the experimental values for: A = enzyme alone; B = B₂₄/E 0.5 molar ratio; C = B₂₄/E 1 molar ratio. t = s, P = benzaldehyde produced (M).

264

The analysis of benzaldehyde production at different $BnNH_2$ concentrations suggests a weak competition of $BnNH_2$. For the EI* that is probably the enzyme-B₂₄ complex which is able to give the products. On the other hand the influence of $BnNH_2$ at concentrations of $17-333 \,\mu M$ is modest because quite a good fitting was obtained using the same constants for each $BnNH_2$ concentration (Figure 7).

The small deviation of the experimental values from the theoretical line which is observed at 7200s and at the higher $BnNH_2$ concentrations might be an expression either of products inhibition, although catalase was used in the assay, or of an alteration of the enzyme due to the long incubation time.

DISCUSSION

These experiments show that B_{24} is a weak substrate of the pure pig plasma BAO. It is gradually deaminated to give its aldehyde which was isolated and identified in GC-MS. The rate of B_{24} oxidation is very slow and was measured in 3 experiments in which B_{24} at different concentrations was incubated with a large amount of enzyme in order to provide sufficient formed aldehyde for HPLC assay.

The formation of an adduct between B_{24} and BAO has been confirmed with the contemporaneous change in the enzyme absorbance at 530 nm as already described.⁶ The formed adduct appears to be very stable.

In fact the M IC₅₀ of B_{24} , when preincubated with the enzyme for a short time, is the expression of a B_{24}/E ratio of 0.5: B_{24} reacts mole to mole with the enzyme.

The initial rate of benzylamine oxidation in the presence of B_{24} is practically an expression of the amount of free enzyme. The free enzyme increases with the time of incubation because some enzyme is released by B_{24} oxidation, thus increasing the oxidation rate of BnNH₂. Initially BnNH₂ is oxidised only when the molar ratio B_{24}/BAO is lower than 1. When the molar ratio B_{24}/BAO is higher than 1, the enzyme is totally inhibited, but gradually the inhibition reverts and benzylamine is oxidised at a rate that is proportional to the freely formed enzyme but reduced by the presence of free B_{24} which is competing for the active site.

These experiments therefore show that B_{24} is a mixed-competitive site directed inhibitor which may appear as a pure non-competitive inhibitor when preincubated with the enzyme at concentrations lower than those of the enzyme. In addition they show that the preincubation time, reducing

RIGHTSLINKA

the B_{24} concentration, may affect the inhibiting activity of low concentrations of B_{24} .

Acknowledgement

This paper was supported by a grant from the European Community (Human capital and Mobility CHRX-CT93-0256), by the Italian MURST and by the National Research Council. We thank the technician S. Cambi and Dr. G. Pieraccini of the Mass Spectrometry Center of the University of Florence who did the mass spectrometer analysis.

References

- Bertini, V., De Munno, A., Lucchesini, F., Buffoni, F. and Bertocci, B. (1985). Italian Patent application n. 47906/85 extended to Europe, USA, Canada and Japan.
- [2] Bertini, V., Lucchesini, F., Pocci, M. and De Munno, A. (1995). Heterocycles, 41, 675-688.
- [3] Bertini, V., De Munno, A., Lucchesini, F., Picci, N., Pocci, M., Buffoni, F., Bertocci, B., Banchelli, G. and Raimondi, L. (1988). *Pharmacol. Res. Commun.*, 20 (suppl. IV), 163-164.
- [4] Banchelli, G., Buffoni, F., Elliott, J. and Callingham, B.A. (1990). Neurochem. Int., 17, 215-221.
- [5] Buffoni, F., Banchelli, G., Ignesti, G., Pirisino, R., Raimondi, L., Santoni, G. and Viti, S. (1990). Pharmacol. (Life Sci. Adv.), 2, 209-217.
- [6] Buffoni, F., Moneti, G., Pieraccini, G. and Bertini, V. (1995). J. Enz. Inhib., 8, 267-279.
- [7] Buffoni, F. and Blaschko, H. (1964). Proc. Roy. Soc. B, 161, 153-167.
- [8] Wilkinson, G.N. (1961). Biochem. J., 80, 324-332.
- [9] Rickwood, D. (1988)(Ed.). Enzyme Kinetics. Oxford, Washington IRL Press.
- [10] Wolfram, S. (1996). *Mathematica*, Cambridge, Wolfram Media and Cambridge University Press.